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Abstract Table 1. List of  symbols and definitions 

A recursive algebraic procedure for solving one- 
dimensional monoatomic crystal structures is presented. 
(If applied to projections, also a three-dimensional 
atom arrangement may be reconstructed.) Moduli of h, i, j, k, l, n 

the geometrical parts of the corresponding structure N 

factors serve as experimental input. The atom coordi- m 

nates are found from the roots of a polynomial. For a 
space group P i  with m atoms in the asymmetric unit, f(x,  sin0/)Q 

the first m + 1 reflections are needed for finding their B 

signs by means of a determinant technique. Using F 
Monte Carlo calculations, the influence of the standard Fo 
uncertainties of the data on the uncertainties of the 
derived coordinates is simulated. In a similar way, hints F~ 
for discriminating between sign variations are obtained, gh 
The resolution in direct space is better than that of a 
one-dimensional Fourier summation over the same 
number of reflections. Error-free data provide a unique 
solution (if homometries are excluded). For data 
affected by experimental uncertainties, all possible 
solutions (compatible with the data) are found. Their Sh-  S(hkl) 
number is always finite, and it may be further reduced 
by employing reflection orders higher than m -t- 1. Some s 
applications of the method are discussed. 

1. Introduction 
Notation and symbols for this paper are given in Table 
1. 

It is almost trivial to state that the mathematical 
procedure of Fourier summation (or transform) appears 
to be indispensable in most structure-solution methods 
that are used today. Determination of structure-factor 
phases permits the calculation of E maps and (at least) 
heavy atoms are found from a Patterson function. In 
both cases, peaks of a density distribution (though 
approximated owing to the inevitably incomplete set of 
Fourier coefficients) are located and used for estab- 
lishing a first structure model to be completed and 
refined in subsequent steps. 

Despite their overwhelming success, Fourier tech- 
niques have a few weak points. Firstly, signs or phases of 
the coefficients are determined with high probability, 
however not with certainty. [This does not apply to 
directly measured signs of structure invariants, e.g. via 

Starting from equation (4), i is used as a running index throughout this 
paper [except for equation (3), taken from Ott (1928), where 
i = ( -1 )  1/2 is obvious]. 
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eh 
P 
Dn 
R(c) 
R(ot) 
Qi 
qi 
Q 
E1 = 0  
d , = 0  

Running indices 
No. of atoms in the unit cell 
No. of (symmetrically) independent atoms in the unit 
cell, also for a partial structure 
Anomalous scattering atoms 
Atomic scattering factor = f°(sin O/)Q + f'OQ + if"O0 
Thermal displacement factor 
Structure factor 
Partial structure factor of a atoms. IFal is obtained by 
measuring IFI 2 at various wavelengths close to an 
absorption edge Xa of a according to Karle (1980). 
As above, but based on dispersive-free f o 
Modulus of the geometrical part of the structure 
factor (of one atomic species, i.e. of a partial structure) 
for m atoms in the asymmetric unit. In space group 
e l ,  

gh = g(hkl) = lET=, cos(2rrh, rj) I 
For a central reciprocal-lattice row, e.g. hO0 

reflections, gh = g(hO0) = ])'-~7=1 cos(2rrhxj)l 
Geometrical part of the structure factor Fh = F(hkl) 
for a monoatomic noncentrosymmetric partial struc- 
ture 
Sign of the structure factor, partial structure factor or 
of its geometrical part 
Sum of powers of cos(2rrxj) with power h 
Matrix with elements Ph 
Determinant of the matrix P (for n, see text) 
Polynomial in c = cos(2rrx) 
Polynomial in ct = exp(27rix) 
Coefficients of the polynomial R(c) 
Coefficients of the polynomial R(a) 
Vector (-Q0,  01, - Q 2  . . . . .  (-1)mQm-1, ( -1 ) '+ lQm)  
Criterion for correct sign variation (Knof, 1989) 
Criterion for correct sign variation (determinant 
method) 

'Umweganregung' effects (Hiimmer & Billy, 1982)]. 
Secondly, in direct methods, not all phases are found for 
computing the first E map - only the ' important '  ones 
associated with high moduli. And, finally, accidentally 
extinct (or nearly extinct) reflections do not (or not 
essentially) contribute to the density distribution and 
thus to the initial structure model. On the other hand, 
from the 'good old times of trial-and-error' solution 
techniques, it is well known that those reflections with 
F - - 0  (or IFI "~ 0) contain important structure infor- 
mation without the need to determine their phases. 
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274 SOLVING CRYSTAL STRUCTURES WITHOUT FOURIER MAPPING. I 

Structure factors for different hi are intimately 
related by the set of atomic positions rj ( j  -- 1 . . . . .  N). 
From these relationships, e.g .  Karle-Hauptmann 
determinants or probability expressions for phase 
combinations, well known tools for determining phases 
of selected F(hi) have been developed. Exact algebraic 
equations (without need for statistics or approxima- 
tions) may be derived when both the structure and the 
set of hi are properly reduced: 

(i) Consider a centrosymmetric structure (or partial 
structure) of chemically identical 'point' atoms at rest. 
Thus, all physical factors determining IF I [such as 
f°(sin 0/X) or f'(X) and f '(X) and anisotropic displace- 
ment coefficients] are disposed off, and an averaged 3~ is 
avoided. For simplicity, one may further assume space 
group P i  and no special positions being occupied. As a 
consequence, F(h) is reduced to its geometrical part 

2shg h = 2 ~ cos(2zrh, rj) (1) 
j=l 

with m = N/2.  
(ii) In reciprocal space, we restrict the sets of hi to 

series of central lattice rows, i.e. to 'harmonic' reflec- 
tions hi, 2hi . . . .  starting with the first order. This 
confines the problem to solving one-dimensional 
projections of the structure, e.g. deriving xj coordinates 
from g(hO0). 

[In another paper (Fischer & Pilz, 1997, Section 5), 
we have described a method that may lead from one- 
dimensional projections of a monoatomic structure to 
an unambiguous geometrical ('point') model via a 
three-dimensional reconstruction: The yj, coordinates, 
for example, independently found from the g(OkO), are 
allocated to the xj or -x j  by using 'diagonal' coordi- 
nates obtained from g(hhO). Similarly, the zj,, can be 
allocated to the two-dimensional projection. Thus, five 
reciprocal-lattice rows are sufficient. This holds if all 
projections can be obtained with appropriate resolution 
and if unique solutions exist for all projections. The 
above-mentioned restrictions associated with harmonic 
reflections may thus be compensated for.] 

The argument for any cosine term j becomes a: 
multiple of that of the first-order reflection. Conse-i 
quently, any cos(2Jrhxj) can be expressed by powers up: 
to h of cos 2rrxj, leading to algebraic equations. 

To our knowledge, Ott  (1928) presented the first 
ideas for algebraic solutions of structures starting from 
accidental extinctions as mentioned above. His method, 
as well as a similar one of Avrami (1939), did not 
become popular for two reasons: In the late twenties, 
the atomic scattering factors were insufficiently known. 
Consequently, approximations to the pure geometrical 
part of the structure factor were unreliable, in particular 
for different kinds of atoms. In addition, the lack of 
computing power caused severe restrictions on practical 
applications. Nowadays, we can separate, e.g. b y  

anomalous (resonant) scattering contrast, the partial 
structure amplitudes of one atomic species from those 
for the rest of the structure (Karle, 1980; Hendrickson, 
1985; Prandl, 1990) and high-speed computing is avail- 
able at our desks. 

The object of this paper is to present an algebraic 
tool for the direct solution of a partial structure 
projected onto one direction, along with a method for 
phase determination, the determinant technique. The 
first is derived from parts of Ott's (and Avrami's) work, 
which seems to have been forgotten. We feel it deserves 
new attention and ought to be reconsidered for prac- 
tical use with modern possibilities. Determinants for 
obtaining signs (Banerjee, 1933) were independently 
developed by one of us (Pilz, 1996) and generalized for 
inclusion of high-order reflections. 

Our paper is divided into two main parts: After some 
preliminaries, we describe theoretical aspects and 
general features of the one-dimensional algebraic 
technique. Within this section, we first (~j2.1, 2.2, 2.3) 
deal with mapping the atomic positions as roots of a 
polynomial under the assumption that the phases of the 
structure factors are known. The technique of sign 
determination is treated later, since it is partly based on 
the coefficients of the polynomial described before. In 
§3, we discuss the resolution in direct space and the 
influence of uncertainties. Finally, some conclusions are 
offered for further discussion. 

While this paper was with the referees, we learnt 
about a rather different algebraic approach to the pfiase 
problem (more general but more demanding) by 
Cervellino & Ciccariello (1996). It is based on a finite 
set of intensities (or unitary structure amplitudes) from 
appropriately selected reflections. We wish to thank 
Professor Ciccariello for providing a reprint. 

2. Theoretical aspects 

2.1. Preliminaries, requirements 

Again, suppose space group P i  with no special 
positions occupied. [Symmetries higher than P1 may be 
easily accounted for in most cases: we experienced no 
essential problem in examining a structure with space 
group Pnma (Pilz, 1996). For special positions, see §2.6.] 

In addition, we omit any physical approximation for 
the case of atoms with different scattering powers. 
Hence, we assume a monoatomic crystal structure (or a 
partial structure of atoms designated 'a'). Partial 
structure amplitudes IFal or  IF21 can be separated 
(Karle, 1980; Hendrickson, 1985; Prandl, 1990) if the a 
atoms are anomalous scatterers (as widely used in 
MAD techniques). The representation of atoms by 
points with unit weight is achieved by reducing lEVI (or 
IF.I) according to 

IF2(h)l/2.f2Th = gh with T h = exp[-B~sin 20(h)lX2], 

(2) 
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which, of course, implies knowledge of the ( 'absolute') 
scale factor and the (overall) displacement factor. 

Consider a one-dimensional projection of the unit 
cell, e.g. parallel to b and e onto a, and assume sufficient 
(in principle 'infinite') resolution. (For accidental coin- 
cidence of point atoms, see end of §2.3.) The corre- 
sponding structure factors are 

2Shg h - - -  2 ~ cos(2zrhxj) (la) 
]=1 

with m = N/2. 
Solving a sufficient set of gh for the x/ was first 

suggested by Ott (1928). 

2.2. Early work 

Ott (1928) and Avrami (1939) have published an 
algebraic method for determining mono- and multi- 
atomic structures. Avrami's more general approach 
proposed an 'overall '  f(hkl)  for approximating S(hkl) in 
order to deal with structures consisting of different 
atomic species. Ott presented (for the general noncen- 
trosymmetric case) a 'characteristic equation', which for 
x coordinates and h00 reflections reads in our notation 

N 
R ( o 0  = I-I(o~ - ~ j )  

]=1 
--- O/N "Jl- el arN-1 + q2ct N-2 + . . .  + qg 

= 0  

with 

N N 
Sh = Z exp(27rihx) = ~ ot h (3) 

]=1 i=1 

and 

mination, he selected rows possessing as many acci- 
dental extinctions as possible. (In a later paper, he 
generalized his algebra to reciprocal-lattice planes.) In 
the following section, we present an algorithm inde- 
pendent of accidental extinctions. How these facilitate 
the solution and also reduce computational efforts will 
be discussed in §2.5. 

2.3. Recursive technique 

Starting from the early ideas, Knof (1989) developed 
a doubly recursive algorithm for centrosymmetric one- 
dimensional projections, i.e. reducing N to m = N/2. 
Cosines of order h > 1 were transformed in a first 
recursion into Ph by applying the 'addition formulae'  
for cos(nx). He found a general sum of powers (Knof, 
1989, p. 28): 

m 
Ph := ~ c°sh(2:rrxi) 

j=l 

[ [h/2] h ( h ; j )  121_ h = Shgh-- ~--~(--lY 2h-1-2] Ph-2j 
]=1 h - - j  

(5) 

with [h/2] the integer part of h/2 and P0 = g o -  m. 
Note: This is one type of relation between different shgh 
(as mentioned in §1), without explicit reference to the 
coordinates xj. 

The number  of variations of signs Sh is limited. 
Consequently, all possible sets of Ph ( h = 1 . . . . .  m) are 
accessible• In a second recursive step, the quantities Qi 
are calculated by using the same arguments as for 
deriving equations (4), i.e. the Ph and Qi are related by 

--P1 + Q1 = 0 

-P2 + Q1P1 - Q22 = 0 

In % = 2m(xjh). 

Using Newton's formulas (Korn & Korn, 1967), the Sh 
and qi are related by [taken from Ott's equation (5)]: 

S1 + ql = 0 

S 2 + qlS1 + q22 = 0 

(4) 
aN .dr_ qlSN_I + . . .  + qN N = 0 

SN+ 1 + qlSu + . . .  + qNS1 = 0 

The N roots of the polynomial R(ot) provide the coor- 
dinates xj. Owing to the required but unknown phases, 
at that time only rather simple (and special) structures 
could be treated. Ott started with central reciprocal- 
lattice rows. In order to reduce the task of sign deter- 

- e m  + OlPm-1 - . . .  + ( -1 )  m+lQm m 

--Pm+l + Q1Pm - . . .  + (-1)m+lQmel 

= 0  

= 0  

(6) 

From (6) follows 

ei  = LJ=o(-1)i-/-1pi-j i (6a) 

with i = 1 . . . . .  m and Q0 - 1. 
In analogy to (3), the Qi are coefficients of a poly- 

nomial R(c) in c = cos(2rrx): 

m 
R ( c )  = I-I(c - c )  

1=1 
= c m -- Qlc m-1 + Q2 cm-2 - . . .  + (-1)mQm . (7) 
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Its roots, cj = cos(2yrxj), provide the x coordinates 
( ]  = 1 . . . . .  m) because the cosine function obeys the 
symmetry  of the object. R(c) can easily be mapped  as a 
function of x: R(x). Figs. 1 and 2 give two examples 
for m = 5 (solid lines computed f rom Shgh with 
h = 1 . . . . .  5, Table 2). In space group Pi,  R(x) is 
periodic in 0 < x < 1 with 0 < x < ½ being the asym- 
metric part. [For higher symmetries, the period for R(x) 
may be smaller, e.g. 0 < x < ½ for a screw axis 21 parallel 
to a. Then, the investigator has to find out whether  a 
given xj, say 0.1, represents  an a tom with x = 0.1 or 0.4. 
Resolving these and other  ambiguities will be dealt  with 
separately.] If two (or more)  coordinates coincide owing 
to the projection f rom three dimensions into one, a 
corresponding degenera te  solution is found for this 
coordinate.  (Coordinates  nos. 4 and 5 in example I 
approximate  this possibility. See also Fig. 1.) 

The degree m of the polynomial  R(c), which equals 
the number  of atoms in the asymmetr ic  unit, must  be 

0 . 0 4  

t 

0.02 i ,-~ 

0.00 

,~',, 
- - 0 . 0 2  

1 _ 2 2 2  ' --0.04 
0.00 xI0. I 0 0.20 x3 0.30 x 0.40 0.50 

x4 s X 

Fig. 1. Polynomial R for a one-dimensional structure (example I) with 
atom coordinates x 1 = 0.075, x z = 0.155, x 3 = 0.235, x 4 = 0.315, 
x 5 = 0.325. (1) Exact gh; (2), (3) gh with assumed uncertainties: (2) 
{A(gh)) = 0.05gh; (3) {A(gh)) = 0.12g h, see §3.1. 

0.10 

R 

0.05 

-0 .00 

- 0 . 0 5  

- 0 . 1 0  

--0.15 = = J l l l l l l l l l l l l l l t , I J , , I , = , t = l , t l t t l l J l l l l l t l l t l =  I 
0.0 0.1 0.2 0.3 0.4 0.5 

X 

Fig. 2. Polynomial  R plot ted v e r s u s  x for a one-dimensional structure 
(example I I )  w i th  atom coordinates x 1 = 0.02, x z = 0.13, x 3 = 0.24, 
x 4 = 0.34, x 5 = 0.45 [error bars indicate standard uncertaint ies of 
coordinates for  assumed standard uncertaint ies of  the geometrical 
parts a(gh) = O.lg h, see §3.1]. 

known. Consequently, signs of the first m 'harmonic '  
reflection orders are required for obtaining Ph 
according to (5) [or later to (12)] in order  to solve the 
one-dimensional  projection by using equations (6) and 
(7). 

2.4. Sign determination, determinant technique 

Afte r  fixing sl, 2 m-1 sign variations exist for calcu- 
lating 'possible'  sets of Ph, h = 1 . . . . .  m. As each of 
them may offer 'solutions',  a criterion is needed  for 
discarding the wrong ones. Knof  (1989) calculated gh, 
f rom the coordinates of each of these possible solutions, 
compared  them with the experimental  gh, obs, and used 
the m i n i m u m  

r m + l  1 1 / 2  

as a figure of merit,  since Ea vanishes for the correct 
sign variation, provided the experimental  g 's are free of 
error• 

A n  improved strategy emerges from a closer 
inspection of equations (6) and (6a). It saves the effort 
of finding all 'possible'  sets of xj ( j -  1 . . . . .  m) f rom 
the above sign variations. From (6a), it follows that  

Q0 :=1 

Q1 = P1 Q0 = P1 

Q2 = (P1Q1 -- e2ao) /2  ---- (P~I -- P2)/2 

O m =  [P1Qm-1 - P2Q,,-2 + . . .  + ( -1 )mpm- la l  

-I- (-1)m+lpmQo]/m. 
• . 

Reformulat ing this system of equations by including Ph 
(h > m) yields 

( P1 1 0 . . .  0 0 ( - Q o  '~ 

P2 Pa 2 . . .  0 0 Q1 

. . . .  • .  " " - 0 2  

Pm Pro-1 Pm-2 . . .  P1 m 

em+l em em--1 "'" P2 e l  (-1)mQm_l 

. . . . . .  ~ (__l)m+lOm 

0 
= . or P . Q = 0 .  (9) 

0 

L0) 
Selecting f rom (9) any m + 1 equations produces a 
square matrix with the consequence that  the chosen 
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Table 2. Theoretical gh for examples I and H 

Example I Example II 
h Sh gh Sh gh 
1 + 0.696 + 0.253 
2 - 2.035 + 0.297 
3 + 0.831 + 0.376 
4 - 0.480 + 0.524 
5 -- 1.696 + 0.221 
6 + 0.831 + 0.646 
7 -- 0.616 - 0.915 
8 - 1.818 + 1.384 
9 + 3.324 

system of equations has nontrivial solutions for Qi only~ 
if 

D ---- det(P) = 0. (10) 

This holds for gh without error• In order to find all signs 
(e.g. of the first m + 1 harmonic reflections in the 
reciprocal-lattice row under investigation), the varia- 
tions of all signs s2, . . . ,  Sm+~ are again checked in terms 
of equation (9). This accounts for 2 m possibilities. (sl 
being arbitrarily selected as long as the origin of the 
projection has not been fixed otherwise.), We denote 
this determinant using the lowest possible number Of 
reflection orders by 

P1 
P2 

D 1 = : 

P~ 
Pm+I 

For a special 

1 0 . . .  0 
P1 2 . . .  0 

: : " . .  : 

Pm-1 Pro-2 ...  P1 
Pm Pm-1 "'" P2 

centrosymmetric 

0 
0 

• (lOa) 

m 

P1 

case with m - - 7 ,  
Banerjee (1933) has derived a similar determinant, 
starting from Ott's (1928) equation. Banerjee's deter- 
minant [his equation (8)] has the same pattern but 
contains (mainly) Sh instead of Ph. Mathematically, it is 
identical with Da. It is, however, built up by using a 
polynomial of double rank• Banerjee demonstrated how 
to determine signs of five 001 reflections from eight 
structure-factor moduli, three of which were zero. (See 
also §2.5.) 

D1 can be evaluated (Pilz, 1996, p. 27) using 

m+l m+l . 
[m+l--Et=2Jl][(m+l--Et=3]2)/2 ] 

E E 
h =o h =o 

[(m+l-]m)/m] 1 ~'--~m+l 

j,. =o j,.+~ 

[ (  ) / I - I  m+l ] 
m + 1 m+l 

X I - I J  fl m + 1 --Jl (m + 1 -Jl)!  ih 
i=1 i=2 

m+l 

X 1--I  P [  1 
i=1 

with 

m+l 
iji = m + 1 (11) 

i=1 

and replacing the Ph by 

1 [h/21 / h \ ( 1 2h_'"-'~ l~=o ~ j )Sh_2jgh_2y, h o d d  

Ph = 1 [m i e h "X h/~l h )'~Sh_2jgh_2j 
l-ikh/2 ) + 2_, j . j=0 

h even. 
(12) 

Equation (12) is derived from Knof's (1989) equation 
(5) and saves one recursion. 

Using DI [from (11)] as criterion for correct signs 
requires twice as many test runs compared to using E1 
[(8)]. Fortunately, however, this is more than compen- 
sated for, since D1 can be calculated prior to solving for 
the coordinates. (On a small desk PC, our preliminary 
program gives a result within 5 min for 10 coordinates 
from 11 gh and employing DI as the criterion for finding 
all the signs.) 

Higher reflection orders can easily be introduced by 
exchanging two rows in P. Using Ph and thus shgh with h 
up to m + n (instead of m + 1) leads to 

D n  ~" 

P1 1 0 . . .  0 
P2 P1 2 . . .  0 

: : : " . .  : 

Pm Pro-1 Pm--2 "'" P1 
em+n em+n-1 em+n-2 "'" en+l 

0 
0 

• " - - 0 .  

m 

pn 
(13) 

Of course, working with m + n  reflection orders 
produces even more sign variations, namely 2m + n - 1. 
This can, however, be avoided by introducing (12) into 
(13), which furnishes expressions of the type 

Dn(g 1, s2g 2 . . . . .  Sm+ngm+n) --- O. 

For example, from 

D 1 = 0 follows 

D 2 -- 0 follows 

D n = 0 f o l l o w s  

Sm+lgm+l = fl(gl, szg2 . . . . .  Smgm) 

Sm+2gm+2 

"-  f 2 ( g l ,  $2g2 . . . . .  Sm+lgm+l) 

Sm+ngm+n 

= f,(gl, s2gz . . . . .  Sm+,<gm+,-O. 
(14) 

(Note that this type of equation between different gh 
depends on m.) By suitable combination of these 
equations, all Shgh with h > m can be expressed by those 
of the first m reflection orders as illustrated below for - 
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m = 3. Here  one obtains 

s4g4,ca 1 - -  (-12g~ + 4g~ + 6s2g 2 - 12g2s2g2 + 3g 2 

--}- 8gls3g3)/3 

ssgs,ca , ---- (15g 1 -- 30g~ + 8g~ + lSglszg z -- 20g~szg 2 

n t- lOg2s3g3 n t- 5Szg2S393)/3 

s6g6,ca I = ( - - 9  "q- 36g 2 -- 36g 4 + 8g 6 -- 12gas2g2 

+ 9g 2 - lSg2g 2 + 3s2g32 + 8g~s3g3 

+ 12gls292s3g3 + 292)/3 (15) 

etc. 
The gh,cal, resulting from experimental  gh of lower 

order,  can be compared with the corresponding 
experimental  values gh,obs: 

d, := (gm+i, cal - -  g r n + i ,  o b s )  2 • (16) 

For any gm+,,,~ derived from 'exact '  gh (i.e. without  
errors) and for error-free gm+,,,obs, d ,  must again vanish. 
Fig. 3 shows El ,  dl and d3 for an example with m = 5. 
(For reasons not  discussed here, E1 and dl are equal  not  
only for the ' t rue '  but  also for all 16 sign variations in 
this special case.) 

Using (12) through (16) implies that  only 2 ' ' -1  sign 
variations need to be tested, independent  of how many 
gh with h > m are considered. Thus, higher spatial 
resolut ion can be expected without exponential  
increase in computer  time. 

Finally, we wish to stress that  one and only one sign 
variat ion is found to be the correct one if two condi- 

1.5 

Y'I, 
d l ,  

d3 

A 
1.0 z~ 

z~ [] 

[] 

A 
[] 

0.5 zx 
ra 

~g 

[] [] 
[] 

0 . 0  I I I i i i i i i i | ~ ~ ~ 115 
1 2 3 4 5 6 7 8 9 10 11 2 3 4 16 

s2 . . . . . .  + + + + + + + + 
s 3  - - - + + + + - - - + + + + 
s 4  - - + + - + + - - + + - + + 

s 5  - + - + - + - + - + - + - + - + 

Fig. 3. Example II (see also Tables 1, 2 and Fig. 2): 1~1 (m), dl (*), d3 
(A) for all variations of s2 . . . . .  ss (gh without errors). 

tions are fulfilled: all gh must be free from error and 
(extremely rare) homomet ry  is absent. (Note, however,  
that  homometr ies  that  do not  exist in the three- 
dimensional  structure may appear  in one- or two- 
dimensional  projections.) Should two or more  'homo-  
metric sets' (Buerger, 1959) exist, one finds two or more  
sign variations with d 1 = 0. For correct gh, a uniquely 
determined set of signs Sh thus produces an unambig- 
uous solution for all xj. (Difficulties int roduced by 
experimental  uncertainties are discussed in §3.) 

2.5. Accidentally extinct partial structure amplitudes 

Unobserved  IFo(h)l and the corresponding gh bear  
impor tant  information and facilitate the algebraic 
solution. This was one of the key arguments in Ott 's  
(1928) paper. On the other  hand,  they play no role in 
Fourier summation,  structure-factor inequalities and 
most direct methods. Let  us assume a gh exactly zero. 
Then its sign need not  be de termined and equations 
(14) are evaluated more  easily. Take for example 
equations (15) (case m = 3) and assume gl -- 0. Then,  

_ setting s 3 --- + l ,  one finds 

Sng4,ca  I = g 2  -t-  2 s 2 g  2 --" g2(g2 + 2 S 2 )  

S5gs,ca I = 35-s2g2g 3 (15a) 

s6g6,ca I = - 3  + 3g 2 + s2g32 -J-2g~3 , 

f r o m  which follows: s 5 = s2; shg h =f(s2g2, g3) for all 
h > 5; gs can be calculated from g2 and g3 without  
knowing their  signs; g4 -- ~ 4-g2. 

For m = 3 and the special case gl = g2 -- 0, one can 
- again define s 3 = +1  and deduce 

0 for h 7~ 3n 

gh = f(g3) for h = 3n 

(e .g.  s6g  6 = - - 3  + 2~33) , 

which reduces the problem to the much simpler case of 
m = 1 by introducing h ' =  3h and determining 3x 
instead of x. 

Thus, we conclude that  each accidental gh---0 
imposes constraints on the solution and reduces the 
number  of phase variations by at least a factor of two. 
(This does not  apply to systematic space-group extinc- 
tions.) 

2.6. Special positions 

Assume an inversion centre in P I  to be occupied. 
Suppose its coordinate  is x,,,--½ (thus labelling this 
a tom as the last one.) Then, equat ion ( la )  reads 

I 
ra--1 

~ cos(27rhxj) -- ½ for h odd 

j=l (17) (Shgh)spl  = m-1 
cos(2zrhxj) + ½ for h even. 

j = l  
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The number of unknowns is reduced by 1. (If desired, a 
change of Xm to 0 includes a change of sl.) 

In the case when both special positions are occupied, 
i.e. x m = 0 and x,,,_l --- ½, this must be detected first and 
can then be handled with 

I 
r a - -2  

cos(2yrhxj) 
j=l 

(Shgh)sp2 = m-2 
cos(2zrhx) + 1 

j=l 

for h odd 

for h even. 

(18) 

For some additional aspects, see §3.3. Other possibi- 
lities, such as occupation of 3 to 8 symmetry centres in 
the three-dimensional structure, fail to pose new or 
severe problems and need not be discussed further. 

2.7. Conclusions 

In general, we may state that the recursive algebraic 
technique offers a straightforward unique solution for 
the structure-factor signs and the coordinates of a one- 
dimensional centrosymmetric crystal structure (or of 
any centrosymmetric projection of a three-dimensional 
structure onto one lattice direction) if the geometrical 
parts of monoatomic (i.e. partial) structure factors are 
exactly known, and if their number, starting from h = 1, 
exceeds the number of independent atoms. In the next 
section, we shall discuss how this statement becomes 
less rigorous for gh affected by experimental uncer- 
tainties. 

3. Data with experimental uncertainties 

3.1. General aspects, resolution in direct space 

So far, the method has been applied to 'exact' gh 
quantities. The results are mathematically exact and 
they provide infinite resolution, in contrast to a Fourier 
summation over a limited set of reflections. In the 
following, we set out to demonstrate that data with 
experimental uncertainties may still lead to a solution 
superior to that from a Fourier series. 

The technique described requires partial structure 
amplitudes IFal or IF21 on an absolute scale and a 
known displacement factor Ba. Both are obtained, at 
least approximately, from Wilson's statistics, if a more 
or less complete data set is available. For a one- 
dimensional data set (or five of them), this is not 
feasible. Ba may, however, be fairly well estimated from 
experience. Small deviations of B~ (or Boverall) are not 
severe for reasons best seen in expressions for Qi, 
derived from (6) and (9) (here for m = 3), which also 
demonstrates the influence of errors in gh: 

Q1 = gl 
1 3 

Q~ = - ~  - ¼ s~g~ 4 

Q3 = lg~l -!g2 1-¼gls2g2 + ls3g3.  

Table 3. Results o f  Monte Carlo calculations for 
examples I and H 

Theoretical 'Experimental '  (xj) -4- a(xj) with 
o ' ( g h )  = 0 . 0 5 g  h t~(gh) = O. lg  h 

j xj (x A ~(x) (x j) ~(x) 
Example I 
1 0.075 0.075 0.003 0.075 0.005 
2 0.155 0.156 0.007 0.157 0.014 
3 0.235 0.234 0.008 0.233 0.018 
4 0.315 0.311 0.011 0.307 0.016 
5 0.325 0.329 0.011 0.333 0.015 

Example II 
1 0.020 0.0200 0.0011 0.0199 0.0022 
2 0.130 0.1300 0.0009 0.1300 0.0018 
3 0.240 0.2400 0.0009 0.2400 0.0019 
4 0.340 0.3400 0.0009 0.3400 0.0018 
5 0.450 0.4500 0.0007 0.4500 0.0014 

gl enters the coefficients Qi of the polynomial R(c) 
[equation (7)] with powers between 1 and m, whereas 
higher harmonics are associated with lower powers. It is 
thus obvious that relative errors of the displacement 
factor (with exponent proportional to - B  E ) do not 'pile 
up' as severely as corresponding uncertainties in gh 
(for small h). Consequently, low-order gh should be 
obtained with special care (via the ]F,[ separation from 
measured [FIE at three or more wavelengths). 

The work of Knof (1989) had already resulted in the 
conjecture that his doubly recursive solution technique 
offers a good spatial resolution. However, owing to the 
recursion, an explicit expression for error propagation, 
i.e. from ff(gh) to tY(xj), cannot be derived in a 
straightforward way. Therefore, Monte Carlo calcula- 
tions on theoretical examples I and II were carried out 
assigning different degrees of uncertainty to the simu- 
lated gh. We assumed Gaussian distribution of indivi- 
dual relative errors with, e.g., tT(.gh) = 0.05g h (or 0.1gh), 
respectively, for one-dimensional structures with five 
independent atoms. Table 3 gives results for these 
examples. 

The a(xj) obtained for example II are also indicated 
in Fig. 2. We may conclude that a(xj) is at least partly 
determined by OR/Ox at x = xj. Fig. 1 presents results 
for example I from theoretically 'exact' gh (solid line) 
and two selected 'bad'  individual data sets. While xl, x2 
and x3 are not severely affected, x4 and xs, being rather 
close, may even appear to be degenerate or as complex 
roots. (Then, our program finds the real part of the two 
complex roots, which can be split using personal 
discretion, because the number m of coordinates is 
known.) Degenerate  (or nearly degenerate) solutions 
usually produce larger coordinate uncertainties. See, 
e.g., example I (Tables 1 and 2) and Fig. 1 in Fischer & 
Pilz (1997). 

Another  aspect is offered for a simple case m = 2, 
which may also be considered in connection with the 
experimental example described in Fischer & Pilz 
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(1997): R(x) permits direct calculation of the coordi- 
nates (without 'root-finding') from 

R(x) = cosZ(2:rrx) - Q1 cos(2zrx) + Q2 

_ _ = COS2(27rx) gl cos(2zrx) + 2 1 ¼s2g2 ' 

(19) 

yielding 

Xl,2 = (1/2,r)  arccos[½gl + ½ ( 2 -  £ + s2g2)l/ ]. 

Including two necessary conditions, namely 

g~ < s2g 2 + 2 and Icos(2zrx)l ___ 1, 

the four derivatives Oxi/~g h are small within the main 
parts of the regions permitted for gh and x, respectively: 

--0.1 < OXl/Og I < 0.1, --0.1 < OXl/Og 2 < 0.05, 

--0.15 < Ox2/Og I < -0.1, 0.01 < Ox2/Og 2 ~ 0.06. 

An assumed Ox/Og = 0.1 causes a coordinate change of 
0.02 owing to an error of 0.2 in g, i.e. 10% of the 
maximal possible gmax = m = 2. The region where 
I Ox/Ogl > 1 is only "--0.005 wide in g and --~0.008 in x. 
Consequently, even small errors in g cause either a 
'forbidden' (and thus impossible) region or lead to a 
small I Ox/Ogl, which results in a high spatial resolution. 
Fig. 4 shows IOxl/Ogll as an example. See also Pilz & 
Fischer (1996b). 

In Fig. 5, standard uncertainties of dl and d3, 
respectively, are also shown as obtained from Monte 
Carlo calculations similar to those mentioned above. 
They are quite instructive and helpful in deciding 
whether a given sign variation is the only possible one 
or not (see also §3.2). 

Let us try to compare the coordinates obtained from 
the recursive algebra with those from a Fourier 
summation (based on the same number of harmonics): 
in the latter, each coefficient enters only once and 
independently of the others. The maxima are built up 
by linear combinations of those harmonics and all 'zero' 

C~Xl/C~g 1 

0"2  0 2 

- - 0 .  

- - 0 .  ° 0 r0 

-1 

gl 

-Fig. 4. Plot of Oxl/Og 1 versus gl and s2g2. 

moduli are omitted. In contrast, imaging the locations 
of the structure by the roots of R(c) or R(x), respec- 
tively, is achieved by sums of powers of all the coeffi- 
cients including those with zero value (or nearly so). 
They also enter R repeatedly and with varying expo- 
nents (i.e. with different weights). 

How robust the algebraic method will behave with 
respect to experimental uncertainties can best be 
investigated by actual experiments. So far, we have 
performed only one study on the partial structures of 
Sb and Se in Cu3SbSe3 (Fischer & Pilz, 1997). For 
determining the partial structures of Se and Sb, we used 
22 and 26 gh,obs, respectively, from six central reciprocal- 
lattice rows each. Compared to gh,cal calculated from the 
known structure (refined on 1540 reflections, 
R -- 0.042), the agreements in terms of a conventional 
R factor were 0.38 and 0.37 for the respective gh se t s  
(Pilz et al., 1994, 1995; Pilz & Fischer, 1996a). From the 
gh,obs, we obtained coordinates that differed by 0.07 
(averaged over all seven independent positional Sb and 
Se parameters and relative to the parameters from the 
refinement mentioned above). This structure was 
certainly a rather small one, however with quite a few 
elements of pseudosymmetry. E.g. one of the system- 
aticaUy produced non-Harker  Se-Se vec tors  in a 
Harker  plane. We consider this example encouraging. 

3.2. Higher reflection orders 

Experimental uncertainties of the gh (and conse- 
quently of dl for all sign variations) may preclude a 
unique solution from the first m-F 1 reflection orders. 

1.5 

dl, 

d3 

1.0 

0.5 

0.0 

t 
i 

tttt 

I I I I I I 

1 2 3 4 5 6 

t 

{ 

; 8 9 1'0 1'1 1'2 1; 14 1; 1; 
S2 . . . . . . . .  + + + + + + + + 

S3 - " + + + + " - + + + + 

S4 " + + - - + + " + + - + + 

s5  - + - + - + - + - + - + - + - + 

Fig. 5. Example II: mean values and standard uncertainties of dx (*) 
and d3 (A) [gh with assumed a(gh) = 0.05g h, see §3.1]. 
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This is demonstrated in Fig. 5: three or perhaps four 
possible solutions (sign variations nos. 4, 6, 16 and 
perhaps 9) cannot be distinguished by dl. (Compare 
with Fig. 3, drawn to the same scale.) If, however, three 
higher harmonics are added to the sign-determination 
process, the resulting d3 permit identification of varia- 
tion No. 16 as the only possible one. Thus, a unique 
result could be obtained by using d3 instead of dl. 
(Higher standard uncertainties for d3, compared with 
da, are natural because adding more reflections along 
with their errors increases the noise, while the dimen- 
sion of the problem remains unaltered. Nevertheless~ 
owing to increased resolution power, the use of higher 
harmonics is always helpful.) 

3.3. Special positions, pseudosymmetry 

If, in the beginning, a special position is not known to 
be occupied, the polynomial will tell it. Suppose, as a 
simple example, a structure with two atoms: x 2 = ½ and 
xl. Then, the 'standard' program finds one atom with 
'double'  weight (double root) at xl and the other with 
'single' weight at or close to x = ½, though both with 

,rather high uncertainties. Fig. 6(a) presents the first 
polynomial calculated from gh'S with relative a of 10%. 
Having noticed the occupation of a special position, one 
can use the program modified according to (17) and 
obtains Fig. 6(b) [which also shows substantially 
reduced a(x)]. 

Let us finally consider a few cases of pseudosym- 
metry and how the algebraic algorithm can handle it. 
Fig. 2 (example II in Tables 2 and 3) shows a pseudo- 
subcell of 1/9. Its Patterson function P(u) would exhibit 
multiple peaks at u _~ 1/9, 2/9 . . . .  caused by a strong 
g9 - -  3.32 as ' fundamental '  reflection (g with smaller h 
tend to be weak 'superstructure' reflections: (gh) = 0.58 
for h = 1 . . . . .  8). These gh may cause problems in 
determining their signs by direct methods. In our 
example, this difficulty was circumvented by the present 
technique after having fixed the signs using reflection 
orders up to h = 8. The standard deviations or(x) of the 
coordinates xj resulting from tr(gh) are usually small 
(see Table 3). 

Another  example is a structure similar to that of Fig. 
6 but with x2 very close to though not exactly at ½. 
Owing to the asymmetry of the error distribution 
(showing a one-sided limit), the deviation 1 - - X  2 

appears exaggerated. This may assist in finding a 
qualitatively correct model structure. 

Suppose a structure possesses almost inversion 
symmetry, which means that the phases, at least of the 
low-order reflections, do not differ much from zero or 
yr. This case (with gh having small imaginary parts) can 
still be handled by the program. Owing to the asym- 
metry of the coordinate shifts from special positions 
(plus their uncertainties, see above), a qualitatively 
correct model for the structure can be obtained, thus 
presenting the shift(s) of atom(s) away from the 

inversion centre(s). (Of course, even with 'theoretical' 
gh, D - - 0  cannot be obtained in this case. However, 
atoms being located at e.g. x-----0.20 and 0.81, i.e. not 
close to a 'special' position, cannot be separated by the 
present program because they almost coincide in the 
asymmetric unit.) 

Quite a few more pseudosymmetric cases could be 
discussed here. If a successful solution is obtained by 
the recursive algebra, it can be ascribed to its good 
resolution power. 

1.0 

R 

0.5 

0.0 I q ~ l g r  ] I ~ t~  I 

- 0 . 5  
0.0 

4. Conclusions 

/ (  one-dimensional centrosymmetric projection of a 
monoatomic structure can be solved using a rather 
l imited number of reflections from the corresponding 

I I I I I I I I I I I I I I I I I I I [ I t I I I I I I I [ I t I | I I I I I [ I I I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 

x 

(a) 

1 . 0 -  

R 

0.5 

0.0 I 

- 0 . 5  i i i i i i i i i i i i i i [ i i i i i i i i 1 i i i i i i i i i i i i i i i i i i i i i i i | i i 

0.0 0.1 0.2 0.3 0.4 0.5 

(b) 

Fig. 6. (a) Polynomial  for  test s t ructure with xl,, .  b = 0.213, x 2 = 1 
[ ,  indicate mean  values and the er ror  bars indicate s tandard  
uncertainties of  the coordinates  caused by assuming cr(gh) = 0.1gh]. 
(b) Polynomial  for test s t ructure with x 1 = 0.213, x 2 = ½, calculated 
with the  modified p rogram according to equat ion  (17) [ ,  indicate 
the mean  values and the er ror  bars indicate the s tandard  
uncertainties caused by assuming tr(gh) = 0.1gh]. 
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reciprocal-lattice row. The recursive algebraic method 
does not require statistics or approximations (besides 
Monte Carlo calculations for obtaining individual 
standard uncertainties for the coordinates and for Dn or 
d,,). Its prerequisites are: a known number of point 
atoms with unit weight at rest. (Consequently, disor- 
dered distributions with different site occupations infer 
additional complications or must be excluded, at least 
from a principle point of view.) The physical approx- 
imations are: known scale factor, approximately known 
anisotropic displacement factor (common to all atoms 
under consideration). 

The technique of determinants provides a mathe- 
matically exact criterion for finding the correct reflec- 
tion signs, independent of accidental extinctions (which, 
however, permit a faster and safer solution). If hom- 
ometries are excluded, the sign determination gives a 
unique answer (quality and number of data are 
assumed sufficient). Consequently, an unambiguous 
coordinate determination is possible. If insufficient 
quality of data precludes the determination of a single 
set of signs, a unique solution can be achieved by 
introducing higher reflection orders and thus providing 
higher resolution in direct space (Pilz, 1996, p. 117). If 
no unambiguous solution can be obtained at all, at least 
all possible solutions are found. Their number may be 
reduced by employing other arguments. 

For a structure having m independent atoms, the first 
m + 1 reflection orders are needed for obtaining m 
signs of structure factors. Generally, m grows with cell 
volume v, the number of accessible reflection orders, 
however, with v 1/3 only. Therefore, t h e a l g e b r a i c  
method will  reach a limit for larger m. Also, deviations 
of the determinants from their theoretical value 
increase with m, in particular due to higher powers for 
the lower harmonic data. 

The recursive algebraic method finds the point 
coordinates xj as roots of a polynomial. Compared with 
the number of data needed, the resolution (and stan- 
dard uncertainties of coordinates) appears superior to 
that of Fourier summations. Without repeating the 
arguments mentioned in §3.1, this may have two 
reasons: The algebra searches for point-atom locations 
xj represented as roots of R. Their standard uncertain- 
ties a(xj) may be estimated (zero-order approximation 
only) from IOR/Oxl at xj. In a Fourier map, one looks for 
maxima of a density distribution o(r) (or its approx- 
imation). Their positional uncertainties depend on the 
method of evaluation. One possibility is to derive them 
from 10zp/~rZl at the position of the maximum. In this 
case, the additional second derivative may cause larger 
errors (contrary to smoothing by integration). The 
recursive algorithm does not 'know' series-termination 
effects [but transforms them into cr(x)]. Double roots 

are easily identified (perhaps best by inspecting a plot 
of the polynomial) and all atoms are found at once. 

The weakest point of the method arises from an 
experimental problem, i.e. the determination of the 
scale factor. If not obtained otherwise, we have, at 
present, no solution to this problem. (The obvious 
constraint that no gh may exceed m plus perhaps some 
estimated error appears to be insufficient because it is a 
one-sided limit.) 

After having successfully applied the recursive 
algebra to a centrosymmetric three-dimensional struc- 
ture and being able to show that the solution was 
unique [at least for the main part (Fischer & Pilz, 
1997)], we are now trying to develop the theory towards 
also solving noncentrosymmetric structures. 
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